

SQLAlchemy-JSONAPI

Contents:

	Quickstart
	Installation

	Attaching to Declarative Base

	Serialization

	Deserialization

	Preparing Your Models
	Validation

	Attribute Descriptors

	Relationship Descriptors

	Permission Testing

	Serializer

	Flask
	Signals

	Wrapping the Handlers

	API

	Errors

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Installation

Installation of SQLAlchemy-JSONAPI can be done via pip:

pip install -U sqlalchemy_jsonapi

Attaching to Declarative Base

To initialize the serializer, you first have to attach it to an instance of
SQLAlchemy’s Declarative Base that is connected to your models:

from sqlalchemy_jsonapi import JSONAPI

class User(Base):
 __tablename__ = 'users'
 id = Column(UUIDType, primary_key=True)
 # ...

class Address(Base):
 __tablename__ = 'address'
 id = Column(UUIDType, primary_key=True)
 user_id = Column(UUIDType, ForeignKey('users.id'))
 # ...

serializer = JSONAPI(Base)

Serialization

Now that your serializer is initialized, you can quickly and easily serialize
your models. Let’s do a simple collection serialization:

@app.route('/api/users')
def users_list():
 response = serializer.get_collection(db.session, {}, 'users')
 return jsonify(response.data)

The third argument to get_collection where users is specified is
the model type. This is auto-generated from the model name, but you
can control this using __jsonapi_type_override__.

This is useful when you don’t want hyphenated type names. For example,
a model named UserConfig will have a generated type of user-config.
You can change this declaratively on the model:

class UserConfig(Base):
 __tablename__ = 'userconfig'
 __jsonapi_type_override__ = 'userconfig'

Deserialization

Deserialization is also quick and easy:

@app.route('/api/users/<user_id>', methods=['PATCH'])
def update_user(user_id):
 json_data = request.get_json(force=True)
 response = serializer.patch_resource(db.session, json_data, 'users', user_id)
 return jsonify(response.data)

If you use Flask, this can be automated and simplified via the included Flask
module.

Preparing Your Models

Validation

SQLAlchemy-JSONAPI makes use of the SQLAlchemy validates decorator:

from sqlalchemy.orm import validates

class User(Base):
 email = Column(Unicode(255))

 @validates('email')
 def validate_email(self, key, email):
 """ Ultra-strong email validation. """
 assert '@' in email, 'Not an email'
 return email

Now raise your hand if you knew SQLAlchemy had that decorator. Well, now you
know, and it’s quite useful!

Attribute Descriptors

Sometimes, you may need to provide your own getters and setters to attributes:

from sqlalchemy_jsonapi import attr_descriptor, AttributeActions

class User(Base):
 id = Column(UUIDType)
 # ...

 @attr_descriptor(AttributeActions.GET, 'id')
 def id_getter(self):
 return str(self.id)

 @attr_descriptor(AttributeActions.SET, 'id')
 def id_setter(self, new_id):
 self.id = UUID(new_id)

Note: id is not able to be altered after initial setting in JSON API to keep it
consistent.

Relationship Descriptors

Relationship’s come in two flavors: to-one and to-many (or tranditional and
LDS-flavored if you prefer those terms). To one descriptors have the actions
GET and SET:

from sqlalchemy_jsonapi import relationship_descriptor, RelationshipActions

@relationship_descriptor(RelationshipActions.GET, 'significant_other')
def getter(self):
 # ...

@relationship_descriptor(RelationshipActions.SET, 'significant_other')
def setter(self, value):
 # ...

To-many have GET, APPEND, and DELETE:

@relationship_descriptor(RelationshipActions.GET, 'angry_exes')
def getter(self):
 # ...

@relationship_descriptor(RelationshipActions.APPEND, 'angry_exes')
def appender(self):
 # ...

@relationship_descriptor(RelationshipActions.DELETE, 'angry_exes')
def remover(self):
 # ...

Permission Testing

Permissions are a complex challenge in relational databases. While the
solution provided right now is extremely simple, it is almost guaranteed to
evolve and change drastically as this library gets used more in production.
Thus it is advisable that on every major version number increment, you should
check this section for changes to permissions.

Anyway, there are currently four permissions that are checked: GET, CREATE,
EDIT, and DELETE. Permission tests can be applied module-wide or to specific
fields:

@permission_test(Permissions.VIEW)
def can_view(self):
 return self.is_published

@permission_test(Permissions.EDIT, 'slug')
def can_edit_slug(self):
 return False

Serializer

Flask

To those who use Flask, setting up SQLAlchemy-JSONAPI can be extremely complex
and frustrating. Let’s look at an example:

from sqlalchemy_jsonapi import FlaskJSONAPI

app = Flask(__name__)
db = SQLAlchemy(app)
api = FlaskJSONAPI(app, db)

And after all that work, you should now have a full working API.

Signals

As Flask makes use of signals via Blinker, it would be appropriate to make use
of them in the Flask module for SQLALchemy-JSONAPI. If a signal receiver
returns a value, it can alter the final response.

on_request

Triggered before serialization:

@api.on_request.connect
def process_api_request(sender, method, endpoint, data, req_args):
 # Handle the request

on_success

Triggered after successful serialization:

@api.on_success.connect
def process_api_success(sender, method, endpoint, data, req_args, response):
 # Handle the response dictionary

on_error

Triggered after failed handling:

@api.on_error.connect
def process_api_error(sender, method, endpoint, data, req_args, error):
 # Handle the error

on_response

Triggered after rendering of response:

@api.on_response.connect
def process_api_response(sender, method, endpoint, data, req_args, rendered_response):
 # Handle the rendered response

Wrapping the Handlers

While signals provide some control, sometimes you want to wrap or override the handler for the particular endpoint and method. This can be done through a specialized decorator that allows you to specify in what cases you want the handler wrapped:

@api.wrap_handler(['users'], [Methods.GET], [Endpoints.COLLECTION, Endpoints.RESOURCE])
def log_it(next, *args, **kwargs):
 logging.info('In a wrapped handler!')
 return next(*args, **kwargs)

Handlers are placed into a list and run in order of placement within the list. That means you can perform several layers of checks and override as needed.

API

Errors

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 SQLAlchemy-JSONAPI

 		
 Quickstart

 		
 Installation

 		
 Attaching to Declarative Base

 		
 Serialization

 		
 Deserialization

 		
 Preparing Your Models

 		
 Validation

 		
 Attribute Descriptors

 		
 Relationship Descriptors

 		
 Permission Testing

 		
 Serializer

 		
 Flask

 		
 Signals

 		
 on_request

 		
 on_success

 		
 on_error

 		
 on_response

 		
 Wrapping the Handlers

 		
 API

 		
 Errors

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

